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Learning Goals for this Lesson
• At the end of this lesson, you should be able to:

• Explain why almost all programs need to support concurrent actions

• Understand how to write code that uses asynchronous results using 
async/await
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Masking Latency with Concurrency
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Why Concurrency?

• Maintain an interactive application while…

• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is running

• Waiting for users to provide input

• Anytime that an app is doing more than one thing at a time, it is asynchronous



Concurrency through Threads
Typical Java Example

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user
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Interacts with user
Draws Swing interface

on screen, updates 
screen

worker

thread 1

Processes data, 
generates results

Share data
Signal each other



Concurrency through Asynchronous Programming

• Everything you write will run in a single thread* (event loop)
• Since you are not sharing data between threads, races don’t happen as easily
• Inside of the JS engine: perhaps more threads
• Event loop processes events, and calls your listeners (“event handlers”)
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Running Asynchronous Example: HTTP Request

let nGets = 0;
app.get('/', (req, res) => {

nGets++;
res.status(200).send(`This is GET number ${nGets} on the current 

server`);
});



async function makeOneGetRequest(){
console.log('Making Request');
const response = await axios.get('https://rest-example.covey.town');
console.log('Heard back from server');
console.log(response.data);

}
makeOneGetRequest();

A Promise is a Representation of a Listener
The “Promise” lets us register a listener for something that will come in the future

To call a function that returns a Promise, you 
must ‘await’ it, from inside of an ‘async’ 

function

Output:
Making Request
Heard back from server
This is GET number 1 on the current server



async function makeThreeSerialRequests(): Promise<void> {
await makeOneGetRequest();
await makeOneGetRequest();
await makeOneGetRequest();

}

makeThreeSerialRequests();

Awaiting a Promise Prevents Your Method from 
Continuing
Example: calling our makeOneGetRequest multiple times with await

Making Request
Heard back from server
This is GET number 2 on the current server
Making Request
Heard back from server
This is GET number 3 on the current server
Making Request
Heard back from server
This is GET number 4 on the current server

Output:



Event Being Processed:

The Event Loop Resolves Promises
Event Queue

JS Engine

event 
loop

Response #3 
from 

covey.town

Response #1 
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Response #2
from 

covey.town

Pushes new event into queuePushes new event into queuePushes new event into queue



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #3 
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covey.town

Response #1 
from 

covey.town

Response #2 
from 

covey.town



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #1 
from 

covey.town

Response #2 
from 

covey.town



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

event 
loop

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #2 
from 

covey.town



The Event Loop Calls Listeners

• JavaScript (and TypeScript) offer “event driven” concurrency: asynchronous 
tasks happen in the background, by the language runtime

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop (buried somewhere in NodeJS) :
while(queue.waitForMessage()){

queue.processNextMessage();
}

• The order of event processing is (in the general sense) unpredictable



Event Handlers “Run To Completion”
AKA: Your code will not be “interrupted”

• The listenerhandling an event and the functions that it (transitively) 
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the listener finishes.
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Implications of Run-to-Completion
The good news: no interruptions/context switching

No other code will run until you finish (no worries about other threads overwriting 
your data)
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async function makeOneGetRequest(): Promise<void> {
console.log('1. Making Request');
const response = await axios.get('https://rest-example.covey.town');
console.log('2. Heard back from server');
console.log(response.data);

}

makeOneGetRequest();
console.log('3. All done!');

Listeners Complete when they Return or Await

Adding ‘async’ to our function definition makes it return a Promise!

Output:
1. Making Request
3. All done!
2. Heard back from server
This is GET number 5 on the current server

makeOneGetRequest returns the promise immediately 
upon hitting await!



Learning Goals for this Lesson
• At the end of this lesson, you should be able to:

• Explain why almost all programs need to support concurrent actions

• Understand how to write code that uses asynchronous results using 
async/await
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