
CS 4530: Fundamentals of Software Engineering
Lesson 4.1: Concurrent Programming Models

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• At the end of this lesson, you should be able to:

• Explain why almost all programs need to support concurrent actions

• Understand how to write code that uses asynchronous results using 
async/await

2



Masking Latency with Concurrency

3

CPU 1

thread0() Main 
Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer 
(Internet in between)

~100,000,000ns

Consider: a 1Ghz CPU executes an instruction every 1 ns



Why Concurrency?

• Maintain an interactive application while…

• Processing data

• Communicating with remote hosts

• Timers that countdown while our app is running

• Waiting for users to provide input

• Anytime that an app is doing more than one thing at a time, it is asynchronous



Concurrency through Threads
Typical Java Example

• Multi-Threading allows us to do more than one thing at a time

• Physically, through multiple cores and/or OS scheduler

• Example: Process data while interacting with user

main

thread 0

Interacts with user
Draws Swing interface

on screen, updates 
screen

worker

thread 1

Processes data, 
generates results

Share data
Signal each other



Concurrency through Asynchronous Programming

• Everything you write will run in a single thread* (event loop)
• Since you are not sharing data between threads, races don’t happen as easily
• Inside of the JS engine: perhaps more threads
• Event loop processes events, and calls your listeners (“event handlers”)

NodeJS

event 
loop

All JavaScript code runs in 
one OS thread

Multi-Threaded App

Thread 
1

Thread 
2

event 
queue



Running Asynchronous Example: HTTP Request

let nGets = 0;
app.get('/', (req, res) => {

nGets++;
res.status(200).send(`This is GET number ${nGets} on the current 

server`);
});



async function makeOneGetRequest(){
console.log('Making Request');
const response = await axios.get('https://rest-example.covey.town');
console.log('Heard back from server');
console.log(response.data);

}
makeOneGetRequest();

A Promise is a Representation of a Listener
The “Promise” lets us register a listener for something that will come in the future

To call a function that returns a Promise, you 
must ‘await’ it, from inside of an ‘async’ 

function

Output:
Making Request
Heard back from server
This is GET number 1 on the current server



async function makeThreeSerialRequests(): Promise<void> {
await makeOneGetRequest();
await makeOneGetRequest();
await makeOneGetRequest();

}

makeThreeSerialRequests();

Awaiting a Promise Prevents Your Method from 
Continuing
Example: calling our makeOneGetRequest multiple times with await

Making Request
Heard back from server
This is GET number 2 on the current server
Making Request
Heard back from server
This is GET number 3 on the current server
Making Request
Heard back from server
This is GET number 4 on the current server

Output:



Event Being Processed:

The Event Loop Resolves Promises
Event Queue

JS Engine

event 
loop

Response #3 
from 

covey.town

Response #1 
from 

covey.town

Response #2
from 

covey.town

Pushes new event into queuePushes new event into queuePushes new event into queue



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #3 
from 

covey.town

Response #1 
from 

covey.town

Response #2 
from 

covey.town



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #1 
from 

covey.town

Response #2 
from 

covey.town



JS Engine

event 
loop

Event Being Processed:

The Event Loop Resolves Promises
Event Queue

event 
loop

Are there any listeners registered for this event?

If so, call listener with event

After the listener is finished, repeat

Response #2 
from 

covey.town



The Event Loop Calls Listeners

• JavaScript (and TypeScript) offer “event driven” concurrency: asynchronous 
tasks happen in the background, by the language runtime

• Event loop is responsible for dispatching events when they occur

• Main thread for event loop (buried somewhere in NodeJS) :
while(queue.waitForMessage()){

queue.processNextMessage();
}

• The order of event processing is (in the general sense) unpredictable



Event Handlers “Run To Completion”
AKA: Your code will not be “interrupted”

• The listenerhandling an event and the functions that it (transitively) 
synchronously calls will keep executing until the function finishes.

• The JS engine will not handle the next event until the listener finishes.

listener1

f

h

g

listener2

... i

j...

processing of 
event queue



Implications of Run-to-Completion
The good news: no interruptions/context switching

No other code will run until you finish (no worries about other threads overwriting 
your data)

listener1

f

h

g

listener2

... i

j...

processing of 
event queue

j will not execute until after i



async function makeOneGetRequest(): Promise<void> {
console.log('1. Making Request');
const response = await axios.get('https://rest-example.covey.town');
console.log('2. Heard back from server');
console.log(response.data);

}

makeOneGetRequest();
console.log('3. All done!');

Listeners Complete when they Return or Await

Adding ‘async’ to our function definition makes it return a Promise!

Output:
1. Making Request
3. All done!
2. Heard back from server
This is GET number 5 on the current server

makeOneGetRequest returns the promise immediately 
upon hitting await!



Learning Goals for this Lesson
• At the end of this lesson, you should be able to:

• Explain why almost all programs need to support concurrent actions

• Understand how to write code that uses asynchronous results using 
async/await

18


	CS 4530: Fundamentals of Software Engineering�Lesson 4.1: Concurrent Programming Models
	Learning Goals for this Lesson
	Masking Latency with Concurrency
	Why Concurrency?
	Concurrency through Threads
	Concurrency through Asynchronous Programming
	Running Asynchronous Example: HTTP Request
	A Promise is a Representation of a Listener
	Awaiting a Promise Prevents Your Method from Continuing
	The Event Loop Resolves Promises
	The Event Loop Resolves Promises
	The Event Loop Resolves Promises
	The Event Loop Resolves Promises
	The Event Loop Calls Listeners
	Event Handlers “Run To Completion”
	Implications of Run-to-Completion
	Listeners Complete when they Return or Await
	Learning Goals for this Lesson

